Mirror Symmetry via Deformation of Bundles on K3 Surfaces

نویسنده

  • Eugene Perevalov
چکیده

We consider F-theory compactifications on a mirror pair of elliptic Calabi–Yau threefolds. This yields two different six-dimensional theories, each of them being nonperturbatively equivalent to some compactification of heterotic strings on a K3 surface S with certain bundle data E → S. We find evidence for a transformation of S together with the bundle that takes one heterotic model to the other. ∗ [email protected][email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Picard Lattices of Families of K3 Surfaces

Picard Lattices of Families of K3 Surfaces bysarah-marie belcastro Chair: Igor Dolgachev It is a nontrivial problem to determine the Picard Lattice of a given surface; theobject of this thesis is to compute the Picard Lattices of M. Reid’s list of 95 fami-lies of Gorenstein K3 surfaces which occur as hypersurfaces in weighted projectivespace. Reid’s list arises in many problems;...

متن کامل

Geometric Aspects of Mirror Symmetry (with SYZ for Rigid CY manifolds)

In this article we discuss the geometry of moduli spaces of (1) flat bundles over special Lagrangian submanifolds and (2) deformed HermitianYang-Mills bundles over complex submanifolds in Calabi-Yau manifolds. These moduli spaces reflect the geometry of the Calabi-Yau itself like a mirror. Strominger, Yau and Zaslow conjecture that the mirror CalabiYau manifold is such a moduli space and they a...

متن کامل

Reflexive Polytopes and Lattice-Polarized K3 Surfaces

We review the standard formulation of mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, and compare this construction to a description of mirror symmetry for K3 surfaces which relies on a sublattice of the Picard lattice. We then show how to combine information about the Picard group of a toric ambient space with data about automorphisms of the toric variety to identify families ...

متن کامل

The Modularity of K3 Surfaces with Non-symplectic Group Actions

We consider complex K3 surfaces with a non-symplectic group acting trivially on the algebraic cycles. Vorontsov and Kondō classified those K3 surfaces with transcendental lattice of minimal rank. The purpose of this note is to study the Galois representations associated to these K3 surfaces. The rank of the transcendental lattices is even and varies from 2 to 20, excluding 8 and 14. We show tha...

متن کامل

D-Brane Probes and Mirror Symmetry

We study the effect of mirror symmetry for K3 surfaces on D-brane probe physics. The case of elliptically fibered K3 surfaces is considered in detail. In many cases, mirror can transform a singular fiber of Kodaira’s type ADE into sets of singular fibers of type I1 (II) with equal total Euler number, but vanishing contribution to the Picard number of the mirror surface. This provides a geometri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997